When Courtney “CJ” Johnson pulls up footage from her Ph.D. dissertation, it’s like she’s watching an attempted break-in on a home security camera.
The intruder cases its target without setting a foot inside, looking for a point of entry. But this intruder is not your typical burglar. It’s a virus.
Filmed over two and a half minutes by pinpointing its location 1,000 times a second, the footage shows a tiny virus particle, thousands of times smaller than a grain of sand, as it lurches and bobs among tightly packed human intestinal cells.
For a fleeting moment, the virus makes contact with a cell and skims along its surface but doesn’t stick before bounding off again. If this were an actual home break-in, Johnson says, “this would be the part where the burglar has not broken the window yet.”
Johnson is part of a Duke University team led by assistant chemistry professor Kevin Welsher. Together with Welsher’s postdoctoral associate Jack Exell and colleagues, they have come up with a way to capture real-time 3D footage of viruses as they approach their cellular targets.
We inhale, ingest and take in millions of viruses every day. Most of them are harmless, but some of them — such as the viruses that cause the flu or COVID-19 — can make us sick.
Source: Read Full Article