New technology can trace which populations of breast cancer cells are responsible for the spread of the disease, and for the first time highlights how the location of cancer cells could be as important as mutations in tumour growth.
The method was created by a team from the Wellcome Sanger Institute, EMBL’s European Bioinformatics Institute (EMBL-EBI), the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), the Science for Life Laboratory in Sweden, and collaborators. It could be used to help answer some of the big questions in cancer, such as why some cancer cells spread, how treatment resistance is formed, and why some therapies fail.
The new study, published today (9th November 2022) in Nature, shows how it is now possible to map how tumours have developed, combining the cancer cells’ genetic information, the surrounding cell types, and how they interact with their environment over time.
In the future, this approach could be used to see how treatments influence the cancer at not only the genetic level, but also any impact on how the tumour interacts with the immune system and the environment around it.
Breast cancer is one of the most common cancers in the UK, with around 55,500 women and around 370 men being diagnosed every year.1
Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumour becomes a patchwork of cells, called cancer clones, each with different mutations. As they are genetically different, they can have different reactions to treatments. For example, some of these cancer cells could become resistant to treatment, or some could spread around the body.
Source: Read Full Article